

Deliverable No. D 1.1

Scoping of regional management needs

PAradigm for Novel Dynamic Oceanic Resource Assessments

Grant agreement No: **773713** Project funded by the European Commission within the Horizon 2020 Programme

> Start date of project: 1st May 2018 Duration: 48 months

Deliverable D 1.1

Scoping of regional management needs

Due date of deliverable: Actual submission date:

Project month 6, 31 Oct 2018 31 October 2018

Dissemination Level: Type of deliverable:

Report, confidential

C01

Main Author(s): Lotte Worsoe Clausen (ICES, P17) WP Leader: DTU Aqua

¹ PU: Public, PP: Restricted to other programme participants (including the Commission Services), RE: Restricted to a group specified by the consortium (including the Commission Services), CO: Confidential, only for members of the consortium (including the Commission Services)

The PANDORA Project

The Blue Growth of European fisheries is at risk due to over-exploitation, unforeseen changes in stock productivity, loss of markets for capture fisheries due to aquaculture, future trade agreements opening European markets to external fleets, and fluctuations in the price of oil and other business costs. All of these risks need to be considered when providing advice needed to sustainably maximize profits for the diverse array of fisheries operating in European waters and to help safeguard the benefits this sector provides to the social coherence of local, coastal communities.

PANDORA aims to:

1. Create more realistic assessments and projections of changes in fisheries resources (30 stocks) by utilizing new biological knowledge (spatial patterns, environmental drivers, food-web interactions and density-dependence) including, for the first time, proprietary data sampled by pelagic fishers.

2. Advise on how to secure long-term sustainability of EU fish stocks (maximum sustainable /"pretty good" and economic yields) and elucidate tradeoffs between profitability and number of jobs in different fishering fleets. Provide recommendations on how to stabilize the long-term profitability of European fisheries.

3. Develop a public, internet-based resource tool box (PANDORAs Box of Tools), including assessment modelling and stock projections code, economic models, and region- and species-specific decision support tools; increase ownership and opportunities for the industry to contributute to the fish stock assessment process through involvement in data sampling and training in data collection, processing and ecosystem-based fisheries management.

The project will create new knowledge (via industry-led collection, laboratory and field work, and theoretical simulations), new collaborative networks (industry, scientists and advisory bodies) and new mechanisms (training courses and management tools) to ensure relevance, utility and impact.

Project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 773713

Deliverable data	
Project / Grant Agree- ment Number	773713
Project title and acro- nym	PAradigm for Novel Dynamic Oceanic Resource Assess- ments
Type of action:	RIA, Research and Innovation action
Call identifier:	H2020-SFS-2017-2
Topic:	SFS-21-2016-2017 Advancing basic biological knowledge and improving man- agement tools for commercially important fish and other seafood species
Starting date:	01.05.2018
Duration:	48 months
Work Package(s) / Task(s):	WP 5 (Engagement, Communication & Impact) / Tasks 5.1 (Co-creating PANDORA with fisheries stakeholders) & 5.5 (External project communication)
Lead beneficiary:	ICES (P17)
Main author:	Lotte Worsoe Clausen (ICES)
Co-authors:	Stefan Neuenfeldt (DTU Aqua), Vera Köpsel (UHAM), Steven Mackinson (SPFA), Claus Sparrevohn (DPPO), Martin Pastoors (PFA), Chevonne Angus (UHI), Wouter van Broeckhaven (VisNed)
Date of delivery:	31.10.2018
Deliverable type:	Strategy/plan
Date of internal ap- proval (for the submis- sion to EC)	
Approved by: (name)	
Keywords:	Ecology, Marine biology, Fishery, Ecosystem-based fisher- ies management, socio-economics, stakeholder engage- ment, external communication, outreach, dissemination

Contributing partners

No.	Short name	Full name	Name and contact info of persons involved
Edito	rs:	·	
17	ICES	International Council for the Explo- ration of the Seas	Lotte Worsoe Clausen
Contr	ibutors:		
1	DTU-Aqua	DANMARKS TEKNISKE UNIVERSI- TET	Stefan Neuenfeldt
	UHAM	Hamburg University	Vera Köpsel
	SPFA	Scottish Pelagic Fishermen's Asso- ciation	Steven Mackinson
	DPPO	Danish Pelagic Producers Organisa- tion	Claus Sparrevohn
	PFA	Pelagic Freezer-trawler Association	Martin Pastoors
	UHI	University of the Highlands and Is- lands	Chevonne Angus
	VisNed	Cooperatie Kottervisserij Neder- land	Wouter van Broeckhaven

Document history

Version	Date	Description
01	Oct 4, 2018	Initial version by Lotte Worsoe Clausen (ICES)
02	Oct 12, 2018	Commented version by Stefan Neuenfeldt (DTU Aqua, P1)
03	Oct 30, 2018	Final version by Lotte Worsoe Clausen (ICES) and Steve Mackinson (SPFA)

Table of content

List of sy	ist of symbols and abbreviations7				
List of F	igures and tables7				
1 Exe	cutive summary				
1.1	Introduction				
1.2	Defining the Challenge9				
1.3	Approach9				
2 Sco	ping for the work in WP1 and WP2 based on informal dialogue and questionnaires10				
3 Util	ity of industry self-sampling to existing and new information needs				

List of symbols and abbreviations

WP Work Package

Т	Task
DoW	Description of Work
MSY	Maximum Sustainable Yield
SE	Stakeholder Engagement
TAC	Total Allowable Catch

List of Figures and tables

Figure 1*:* Illustration of the PANDORA Engagement Strategy.

Table 1: Case Studies of species and fisheries.

Table 2: Case Studies and focal fish species; main results of the scoping exercise.

Table 3: Example of what an ecosystem table in species-specific advice may look like.

Table 4: The utility potential of data collected through industry self-sampling

1 Executive summary

1.1 Introduction

PANDORA is designed to fulfil the expected impacts of this research with an overarching goal of improving fisheries management under the Common Fisheries Policy. This goal will be ensured by:

- Increasing the knowledge base, share new findings, provide new tools and promote their uptake by end-users to more efficiently manage fish stocks within European waters.
- Increasing the long-term profitability of the EU fleet and increase the number of jobs in the fishing sector.
- Improving the market supply and food security in Europe by fishing sustainably at MSY.
- Contributing to adjusting fishing exploitation to levels that ensure the MSY.
- Improving the professional skills and competences of those working and being trained to work within the blue economy via workshops, training courses.

The integration with producer organisations, NGOs and policy makers in PAN-DORA will ensure continued participation, co-ownership and uptake of project results by these important stakeholders. Instead of the classical model of generating new knowledge and disseminating it afterwards to relevant stakeholders, PAN-DORA relies heavily on cocreation² "allowing the endusers to co-construct the service experience to suit their context"³ through iterative communication in each phase of the project. An important impact of PANDORA is consequently, that the 'burden of proof' is considered shared between scientists and stakeholders, re-

Figure 1: Illustration of the PANDORA Engagement Strategy and the interconnections among dissemination and exploitation, communication and stakeholder engagement with central elements (workshops and training) at the interface of these activities

² <u>https://ec.europa.eu/digital-single-market/en/news/co-creation-open-innovation</u>

³ Prahalad & Ramaswamy, 2004. <u>Co-Creation Experiences</u>, J of Interactive Marketing. Volume 18, Number 3.

sulting in a much more effective uptake of project results. This effort is possible through the consortium's existing stakeholder network, earned through long-standing successful collaboration. All partners of the consortium are devoted to generating new knowledge and decision support tools for the fishing industry and managers.

Dissemination and exploitation are inextricably linked with communication and stakeholder (fishing industry, fisheries scientists involved in stock assessment and policy makers) engagement activities (Fig. 1),

Encouraging multi-directional communication (dialog) is a key activity within PANDORA, which will be facilitated in a number of ways; through stakeholder engagement and scoping (central to WPs 1-5) via regional workshops and face-to-face interviews, an active PANDORA Advisory Board (PAB) and an informative and interactive website. This will help ensure that the project is effectively co-framed with the European fisheries industry and RFMO's (to the mutual benefit of the project and its stakeholders) and that the project remains adaptive to industry and policy trends.

1.2 Defining the Challenge

PANDORA aims to draw on broad participation from various interest groups, including large fisheries on pelagics as well as small-scale fisheries (e.g. Pêcheurs de Bretagne in relation to blackspot seabream), and for each Case Study region toorganise a series of workshops conducted with fishers, scientists and RFMOs.

The overarching goal is to scope regional management needs for biological information, for example reach an agreement on potentially upcoming new resources, and focal species showing large changes in biomass and/or distributions within recent years.

The challenge is to motivate the different stakeholder groups and individuals to participate in PANDORA, and to collect their input in a way that it actually can be applied in the core activities and during the lifetime of the project.

1.3 Approach

PANDORA applies a double path for the biological information generated in WP1. In some cases, biological information will be used directly to inform fisheries management (WP4 and WP5). Examples include changes in distributional patterns, species interactions or vital rates such as growth to be communicated via information sheets made available by PANDORA supplementing e.g. the fisheries and ecosystem summaries prepared annually by ICES. In other cases, the biological information is integrated into stock assessment models. Examples include additional state variables or quality-improved catch data from the industrial self-sampling in Kalman-filter based, retrospective estimation models (assessment *sensu stricto*) as well as short-term predictions including improved estimates of natural mortality and growth (T2.1). In addition, PANDORA will re-visit the concept of sustainability in the face of, from a biological perspective, species interactions, climate change and resulting distributional changes, and changes in carrying capacity that decouple spawning stock biomass from recruitment - the constancy of this relationship is a central paradigm in the F(msy) approach, but there is growing concern that this paradigm leads to critical bias in our perception of sustainability.

The complexity and amount of available information and avenues for processing necessitate the development of a conceptional framework and roadmap for the work in T1.2 & T1.3 as well as WP2. This framework and roadmap is going to be developed in T1.1 in close coordination with WP5.

A first important step for co-framing PANDORA and gathering input for various deliverables (especially D1.1) has been the **informal dialogue** in the form of face-to-face or virtual conversations among the project partners and with individuals in the existing regional stakeholer networks. Topics of conversation in this context region-specific developments in fish biology/ecology as well as gaps in current stock assessment methods and fisheries management practices. These informal consultations have been carried out at the start of the project a, but will be a continously ongoing part of the activities through which PANDORA engages with its stakeholders.

An important scoping tool are survey questionnaires that are distributed among different stakeholder groups. To increase the efficiency of this survey, two separate questionnaires have been designed and distributed; one for fishers/fisheries managers/policy- and decision-makers/NGOs in the Case Study regions focusing on biological/ecological developments and management practices (*cf.* deliverabale 5.2, Appendix 2), and second one for stock assessment scientists focusing on the stock assessment process (*cf.* deliverabale 5.2, Appendix 3).

The survey was carried out in a number of consecutive steps.

- 1. *September 2018*: survey questionnaire S1 was distributed to the Case Study leaders of the PANDORA project for initial input in.
- 2. **October 2018**: survey questionnaire S1 is circulated among the regional networks of the Case Study leaders for input from fishers/fisheries managers/policy- and decision-makers/NGOs in the Case Study regions.
- 3. *September/October 2018*: survey questionnaire S2 is sent to the Working Group Chairs of relevant stock assessment groups within ICES and the Mediterranean for further distribution.

Results are constantly being returned to the project and collcted centrally by WP5 leader UHAM (P4). This report gives an poverview over the current state of survey returns in late October 2018. The questionnaire database will be updated constantly for the urpose of continuously adjusting PANDORA work to the needs of its stakeholders.

Finally, the consortium discussed at the project kick of the **data from the industry self-sampling** generated and collected in PANDORA, and how these will provide a means of supplementing and 'reality-checking' survey data important for the assessment.

2 Scoping for the work in WP1 and WP2 based on informal dialogue and questionnaires

The work in PANDORA is conducted in Case Studies representing the broad regional differences in available tools and data, as well as important differences in European fished stocks, their habitats and their fisheries (Table 1). In the **Mediterranean Sea**, 85% of the few assessed stocks are

currently overfished compared to a maximum sustainable yield reference value (MSY) while populations of many commercial species are characterized by truncated size- and age-structures. Rebuilding the size- and age-structure of exploited populations is a management objective that combines single species targets such as MSY with specific goals of the ecosystem-based approach to fisheries management, preserving community size-structure and the ecological role of different species. The result will be advancements transferable to most (if not all) commercially important European fisheries. In the **Bay of Biscay**, a range of species are exploited as target or bycatch in multi-species fisheries, though only a few stocks are analytically assessed. Many stocks constitute potential choke species (once quota for this species is hit, fishers have to discontinue operations due to the landing obligation), in particular while stocks rebuild. More realistic assessment models will allow reduced uncertainty buffers in Total Allowable Catches (TACs) and hence reduce their effects as choke species. The Northwestern European Shelf case study region in PANDORA comprises the sea areas west of Scotland and Ireland (ICES subarea 6a, 7b,c) and the northern North Sea (ICES IVa), which provide important spawning, feeding and nursery areas for some of the most abundant pelagic fish in the NE Atlantic; namely mackerel, herring, blue whiting and western horse mackerel. Priorities for conservation and managing these stocks at MSY necessitate improved understanding of the degree of mixing, fidelity to spawning areas and the ecological drivers determining their abundance, distribution and body condition. Mackerel, the single most valuable (and abundant) pelagic stock, spawns in waters of the western shelf edge, migrating north to northern Norway and west as far as Greenland during the summer and back southward in winter. The exploitation of this stock is highly valuable to many fleets of Europe, as well as Norway, Faroe Islands, Iceland and Greenland. A wide variety of commercially important species inhabits the North Sea leading to a complex food web structure and mixture of fisheries with strong technical interactions (more than one species are caught simultaneously and one species may be fished by different gears). Several stocks that have analytical assessments show decreasing fishing mortalities in recent years and biomass recovered above reference levels (e.g., cod, plaice, sole). However, many stocks are still categorized as data-poor, being landed primarily as bycatch and/or inadequately sampled by existing scientific surveys and/or commercial sampling programs. Management in the North Sea will benefit from improved information on sub-stock definitions (e.g. cod or Nephrops), exchange rates, spatial extent, predator-prey interactions and other factors governing dynamics, while data-poor stocks require the development of improved monitoring strategies to aid in their assessment and management. In the Eastern Baltic Sea, cod, herring and sprat fisheries constitute about 80% of the commercial catches. The Common Fisheries Policy foresees that these three species are managed accounting for cod predation in a multispecies approach. However, there is currently no population model for cod, since age-reading is impossible. Hence, natural mortality rates for herring and sprat have to be considered outdated. Furthermore, the invasive round goby is spreading, and its potential commercial importance is unknown.

Table 1: Case Studies of species and fisheries. Fisheries: Longline (LL), purse seiner (PS), trap (T), Ottertrawl (OT), static nets (SN), Trawl (TR), Set nets (SN), Gillnet (G), Demersal trawl (DT), Pelagic seine (PS), conventional gear (CG), pelagic trawl (PT), Beam trawl (BT). Current management methods: Total Allowable Catch (TAC) (1), effort (2), spatial measures (3); Current assessment methods: VPA-type (VPA), Data-poor (Poor), Multispecies (Mult), Statistical methods (Stat), not developed (Develop); Current biological knowledge: Spatial structure (S), food webs (F), density dependence (D), environmental drivers (E) indicated by traffic lights: red – poor knowledge, yellow – not implemented in current projections, green – knowledge currently used for projections.

Case Study	Species	Fisheries	RFMO or IFO	Cur- rent- Man- age- ment meth od	Cur- rent Assess ment metho d	(F k S	Cur Bio c no f F	rer log al wle ge D	it i- ed E
Mediterranean	bluefin, albacore	LL, PS, T	ICCAT	1	VPA, Poor				
lero, IEO)	hake, rose shrimp, red mul- lets	OT, SN, LL	GFCM	2,3	VPA				
	mackerel, jack mackerel, sea Breams	TR, PS, SN	GFCM	2	VPA				
Bay of Biscay	red seabream	LL, OT	EC	1	None				
(Lead:Verena Tren- kel, Ifremner)	thornback, cuckoo, spotted & blonde rays	TR, G	EC	1	Poor				
North-western Euro- pean Shelf (Lead: Chevonne An- gus, UHI)	mackerel	РТ	NEAFC, EC	1	VPA				
North Sea (Lead: Alexander	cod, haddock, saithe, whiting sole, plaice, hake	OT, BT, G	EC / Norway	1, 3	VPA, Stat				
Kempt, TIJ	mackerel, herring, sprat	PS, PT	EC / Norway	1, 3	VPA				
	horse mackerel, brill, turbot	-	EC / Norway	1	Poor				
	shrimps (Crangon crangon)	Т	EC	-	De- velop				
Eastern Baltic Sea	cod	TR, G	EC	1,3	Mult, Stat				
CAU)	herring, sprat	TR, G	EC	1	Mult, Stat				
	round goby	-	EC	-	Poor				

EC= European Commission, NEAFC = North East Atlantic Fisheries Commission (RFMO), GFCM = General Fisheries Commission for the Mediterranean (RFMO), ICCAT= International Commission for the Conservation of Atlantic Tunas (IFO)

Questionnaires have been developed and distributed to the stock assessors and other stakeholders for each of the stocks in the case studies. Also stocks of the same speices in neighbouring areas were included in the distribution.

Questions addressed to stock assessors:

- 1. What species and stocks are you responsible for assessing?
- 2. What is your perception of the effectiveness and quality of current stock assessments?
- 3. Is there anything that you would like to change in current stock assessments?
- 4. From your perspective, what are the most pressing assessment issues currently?
- 5. Are you aware of any new fisheries developing in your region? If yes, for which target species?
- 6. Have you seen changes in the spatial distribution of certain fish stocks? If yes, which ones?
- 7. Have you observed or have you discussed (e.g. at ICES Expert Group meetings) any changes in fish biology (size, weight, feeding, behaviour etc.)? If yes, please give examples.
- 8. In your opinion, what are the reasons for the changes in fish biology?
- 9. Regarding your specific stock(s), what parameters are most uncertain and what data are most needed to reduce these uncertainties?
- 10. If considerable, new knowledge was available on one or more of the four processes (below), which one(s) (if any) might be most relevant to improving assessments made on the stocks you study?
 - a) Density dependence b) Food web interactions
 - c) Spatial distribution d) Environmental (abiotic) drivers?
- 11. What improvements in stock assessment models could be most easily implemented within the next two to three years?
- 12. Do you think it is a useful idea to develop an online tool box to improve the processes of stock assessment and fisheries management? Have people ever used an online toolbox before or would you use one in the future?

Questions addressed to other stakeholders stakeholders (e.g. fishermen associations, NGOs, policy, ministry staff):

- 1. What species and stocks are of greatest interest to you?
- 2. What is your perception of the effectiveness and quality of current stock
- 3. Is there anything that you would like to change in current stock assessments?
- 4. From your perspective, what are the most pressing management issues a) currently
 - b) potentially in the future?
- 5. Is there anything that you would like to change in current management practices?
- 6. Are any new fisheries developing in your region? If yes, for which target species?
- 7. Have you seen changes in the spatial distribution of certain fish stocks? If yes, which ones?
- 8. Have you observed any changes in fish biology (size, weight, feeding, behaviour etc.)? If yes, please give examples.
- 9. In your opinion, what are the reasons for the changes in fish biology that you observed?
- 10. Are you currently collaborating with fisheries scientists or did you in the past? If yes, please state how.
- 11. Do you know any examples of how data/information from fishers are used by

fisheries scientists?

- 12. In your view, what data/information from fishers would be particularly valuable to fisheries scientists?
- 13. What challenges do you perceive in cooperation with fisheries scientists? Please give brief examples from your experience.
- 14. Are you aware of any initiatives to increase collaboration?
- 15. Additional to existing initiatives, which measures would increase cooperation between fishers and fisheries scientists?
- 16. May we contact you during the lifetime of PANDORA regarding an interview about your perspective on science-policy or science-industry cooperation?

The contacts established through the distribution of these questionnaires and through related informal dialogue will be maintained throughout the project. The table below give a summary of the input to the project by the returned questionnaires, status end Octber 2018.

Table 2: Case Studies and focal fish species; main results of the scoping exercise status October 2018.

Case	Species	Scoping biologi	Scoping biological knowledge for assessment and management					
		Spatial Struc-	Food webs	Density De-	Environ-	Other		
		ture		pendence	mental			
				•	drivers			
Medi- terra- nean	Hake, red mullet, deep shrimps	Knowledge about Spatial distribu- tion is usually in- corporated in the assessment pro- cess, but without implication in the analytical result of this. (Maps in the Stock assessment forms)		Growth is uncer- tain (k, L(inf), t(0)		Having in mind that more than 90% of Medi- terranean stocks are overexploited, the effective- ness of assess- ment is null, basically be- cause the management is absent. Spa- tial manage- ment is the fu- ture for the Mediterranean Sea.		
Medi- terra- nean	Albacore			natural mortality and growth pat- terns still remain a considerable source of uncer- tainty	further knowledge on environmen- tal drivers would enable to estimate better abun- dance indices from rec- orded nomi- nal catches	improvement of total catch time series and the availa- bility of indi- ces of abun- dance are key for the reduc- tion of uncer- tainty		
Medi- terra- nean	Bluefin tuna	the spatial distri- bution is the effect of the environ- mental drivers as				quality and quantity of the		

		well as density- dependence ef- fect. The four pro- cess mentioned above are interre- lated				input infor- mation is lim- ited
Medi-	Deep-wa-		hake stomach		effects of abi-	Since the man-
terra-	ter rose		contents are		otic drivers	agement
nean	shrimp.		necessary to		(e.g. tempera-	scheme will be
	European		undate the		ture) areim-	probably
	hake. Red		Gadget multi-		portant to be	based on an
	mullet		species model		incorporated	effort quota
			where hake is		within popu-	system, the
			the predator of		lation pro-	most pressing
			deep-water		cesses and	issue is to in-
			rose shrimp		dynamics (e.g.	vestigate the
					growth, body	relationship
					condition, re-	between fish-
					cruitment)	ing mortality
						and fishing ef-
						force floots
						evoloiting the
						target stocks
Bay	Black	lacks studies on	Fishermen	it seems that due		Transparent-
of	spot	the juveniles dis-	(those who tar-	to the fishing		Assessment-
Bis-	seabream	tribution, sex pro-	get blackspot	pressure over		Framework
cay		portion in the	seabream) com-	the biggest		(TAF) and the
		stock, migration	plain about bio-	individuals the		Github using R
		notics for the	tions with blue	small ones in the		in ICES the as-
		study of connec-	fin tuna (info	nonulation		sessment pro-
		tivity among ar-	from the Med)	increases.		cess could be
		eas, specific	,			very useful.
		age/length rela-				
		tionships, surveys				Toolbox
		for the egg abun-				should be
		dance estimation.				quite flexible
	Soveral	Biomass index is				so that experts
	skate and	the key parameter				integrate their
	shark	for some stocks				knowledge.
	species	To reduce the un-				
		certain the hio-				BLS assess-
		mass index of sur-				ment in con-
		vev covering the				fishermon
		all ecoregion are				obervations
		the most needed				
		data				Fishermen
		uala.				would appre-
						ciate Multi-
						year TAC with
						emergency re-
						dures
North	Haddock			In haddock the	regime shift	Toolhox needs
Sea	maaden			sporadic large	to warmer	to be easy to
				year classes have	temperatures	access and use
				diminished in	especially on	and be flexible
				magnitude in re-	recruitment	enough that it
				cent years (since	given the re-	can be
				∠000J.	gime shift	adapted to in-
					nauuock seems to have	stocks It

				new information on density de- pendence affects on growth, re- cruitment, ma- turity and mor- tality would be useful	experienced in recent years	would also be preferable to be able to cus- tomize things and explore al- ternative op- tions easily and be fast
North Sea	Cod, had- dock, whiting, saithe, anglerfish	We need ways to deal with North Sea cod in the dif- ferent regions of the North Sea. This includes questions about stock structure and reasons for the stock develop- ments in different regions of the North Sea. Is the further decrease in the southern part of the North Sea already a re- sult of climate change that can- not be reverted by fisheries manage- ment? TAC areas should reflect stock ar- eas.	Changes in pre- dation mortality over time would need to be monitored via stomach sampling on ex- isting surveys or with the help of the industry.	Absolute num- bers of e.g., spawning stock biomass and fishing mortality are uncertain and sometimes even biased. This is expressed in jumps some- times occurring in assessment re- sults and advice after bench- marks and up- date assess- ments. Reasons are, e.g. uncer- tain survey indi- ces, uncertainty in age determi- nation, insuffi- cient knowledge about natural mortality and re- cruitment as well as changes in model types and settings during benchmarks. So far mainly pure single spe- cies methods have been used for reference points without taking into ac- count density de- pendent effects (e.g., cannibal- ism, reduced weight at age at high abun- dances)		Try to include more data available from the industry. More ad- vanced tools are needed for reference point determi- nation and management strategy evalu- ations. Strongly re- covering stocks due to MSY based management may cause problems in the food web. Attempts to set up a pilot study to pro- vide accurate catch data has been ham- pered by the fact that Gov- ernment fish- eries scientists are unable to operate with data that may demonstrate that an activity may not be complying with regula- tions.
North Sea	Plaice, Sole, Brill, Turbot	Plaice has a strong age-specific spa- tial distribution indications of the presence of poten- tial sole subpopu- lations An advanced sur- vey employing the	Turbot is a fast- growing spe- cies. Estimates of natural mor- tality of turbot are fixed over all ages. Im- proving our knowledge on food web inter-	Density depend- ent growth rates. Sole weights and lengths-at-age seem to be de- creasing		Not enough training for young scien- tists on how stock assess- ment works, what are the statistical ra- tional behind the manage- ment strate- gies

North Sea	Skates and Rays	spatial distribu- tion of turbot may improve the qual- ity of the survey indices For many elasmo- branch species the population struc- ture ic net well	actions for tur- bot could im- prove this esti- mate.			Develop prox- ies for refer- ence points
		studied and knowledge on the spatio-temporal distribution is limited.				based indica- tors
North Sea	Whiting	At the moment, the assessment is done for 4 (North Sea) and 7d (east- ern Channel) com- bined, while the TAC is given sepa- rately (7d to- gether with 7b-k). The reasoning for a combined stock assessment rely on the fact that stock component in area 7d appears to migrate into area 4 to some de- gree during the year, while con- nectivity with the Western Channel and Irish Sea is as- sumed to be low.	The whiting stock is driven by natural mor- tality and re- cruitment varia- bility. Addi- tional knowledge on other factors driving the stock dynamics is also valuable. As more data becomes availa- ble, knowledge on foodweb in- teractions driv- ing natural mortality for this stock can improve assess- ment	Information on density-depend- ence mecha- nisms with re- gard to recruit- ment would be most relevant	Due to the un- certainty in the prediction of recruit- ment, the knowledge ef- fect of envi- ronmental drivers on the stock dynam- ics could po- tentially im- prove assess- ment	
Baltic Sea	Cod	Exchgange be- tween the Westernand East- ern Baltic cod stock is still un- clear.	The poor condi- tion of Eastern Baltic cod and slow growth led to increased cannibalism that has to be quantified for assesment	Linkage between density depend- ence and envi- ronmental driv- ers is unclear	Environmen- tal effect on recruitment is not employed in short term predicitons.	
	Herring	complex of sev- eral meta-popula- tions	Predation of cod on herring needs update	Biological sam- ples from the western Baltic have occasion- ally low size- and weight-at-age which have been related to mixing with the central Baltic herring stock	It is unclear if the stock productivity is under a new regime or not.	Herring mix with other large stocks such as the North Sea her- ring and cen- tral Baltic her- ring and this is reflected in both commer- cially and sur- vey mixed cac- thes
	Sprat	Changes in dis- tributon towrads the North-Eastern Baltic	Predation of cod probably important for thining of sprat	Low weight at age – effect of plankton abun- dance unclear.	Effect of tem- perature on recruitment	

	in the South- Eastern Balti		
--	--------------------------------	--	--

The biological knowledge on spatial distributions, foodweb processes, density dependence and environmental drivers has to be translated to operational parameters for stock assessment and management. Based on this scoping exercise, the parameters currently comprise:

- Weight-at age (or length) (W)
- Maturity (Mat)
- Predation mortality rate (M2)
- Recruitment (R)
- Distributional Range (D).

Pandora is currently in dialogue with ICES to supplement current stock assement summary sheets with this biological knowledge. A template table may look like this:

Parameter	Change	Why?	Short term	Long term fore-
W		Explain here the reason for changes in the parameters in	Any effect on short term fore-	Any effect on long term fore-
Mat		terms of spatial distributions, foodweb proceses, density de- pendence or environmental	casts, e.g. on the suitable time range for aver-	casts e.g. on the assumptions of stability in the
M2		drivers,	aging is listed here	relationship be- tween stock size
R				potential, is listed here.
D				

Table 3: Example of what an ecosystem table in species-specific advice may look like.

An obviously link to stock advice sheets are the sections on 'Quality of the assessment' or 'Issues relevant to the advice', since it it here that the value of considering these parameters can be explained because they provide the context to the advice, either in the short term or long term.

The choice of parameters will be adapted during the course of the project. Furthermore, as the work in WP2-4 proceeds, the explanation will be supplemented with model algorithms and links to the tool box which facilitate the quantitiative accounting for the changes and relevant processes.

3 Utility of industry self-sampling to existing and new information needs

The case for undertaking industry self-sampling is founded upon an identified need to either:

- (i) **Improve Quality** where the purpose is to improve the quality of data that is already routinely used to assess stocks and manage fisheries.
- (ii) **Improve Understanding** where the purpose is to provide additional data beyond that currently used to assess stocks and manage fisheries, which can be used to improve the understanding of changes in fish stocks and fishing fleet behaviour.

The crux of making industry data initiatives effective is matching what is needed with what is possible to provide and also with the incentives needed to maintain durable relationships. This means having a clear view of how it's relevant and how it will be used. In the table below, specific applications are identified and ordered in terms of their value in contributing to improvements in scientific and management information needs, and the timescale that they might be expected to make an impact. The order of these would need to be considered in detail for each target species.

Application	Value to science	Time- scale for impact	Data needs
 Improve quality of stock forecast and advice on fishing opportunities 	Indicators of year class strength re- quired to improve the estimate of recruitment used in the forward pro- jection.	Short	 Length and weight composition of catch for every haul by lat, long.
	Providing finely resolved (lat, long) spatial information on growth rates.		OR/AND
			 Acoustic data on fish distribution and size composi- tion.
 Improve quality of age structure in stock assessments 	Better precision and reduced bias in the size and age composition of the catch. Improved consistency in tracking year classes should help re- duce the year to year variability in stock assessments, which is a key frustration that undermines peo- ple's confidence in stock assess- ment and the people involved in it. Particularly relevant if surveys are	Medium	Same as 1.
	not undertaken annually since it pro- vides another index of changes to track year-to-year changes.		

Table 4. The utility potential of data collected through industry self-sampling (Timescales: short – 1-3 years, medium 2-5 years, long 5-10 years)

• Develop the future of stock assess- ments	Spatially resolved stock assessment models would have the necessary spatial data on size structure and growth rates to improve their per- formance.	Long	Same as 1.
• Monitor changes in the marine ecosys- tem	At sea measures of the length, weight fat content and gonad weight of fish provides condition and growth rate information. This can be linked to environmental vari- ables associated with fish catches/ distribution. Changes in growth rate would affect estimates of sustaina- ble fishing rates. At factory measurements of fat con- tent or gonad weight	Medium to long term	 Same as 1, plus For every haul, record the key environmental variables such as temperature and depth. Fat content measured across full range of catch sizes
• Indicators of fisher- ies performance	Estimate the catch per unit effort for every trip, where effort could be the amount of time or distance, fuel used searching before fishing.	Medium	5. Measure search ef- fort. A crude indi- cator would be - time left port to time first haul, and times between multiple hauls (from eLog or per- sonal record). More refined – dis- tance sailed to first haul and be- tween multiple hauls (from plotter track data, ideally with link to eLog system). Com- bined with 1 gives CPUE.
• Assist planning fish- eries independent scientific surveys	Year round information on spatial distribution and biology could be used to assist in planning independ- ent scientific surveys. For example, to establish the survey boundaries.	Short	 Same as 1 & 3, plus 6. Acoustic information on fish distribution 7. Recording marks of fish that are not fished
• Fisheries depend- ent indices of abun- dance	Year round information on relative abundance and spatial distribution could provide auxiliary data to com- pute relative abundance indices.	Medium to Long	Same as 1 & 3, plus

	This might be particularly relevant where scientific surveys cover wide areas or encounter bad weather conditions that compromise the quality of the survey.		 Acoustic information on fish distribution Recording marks of fish that are not fished
• Evidence spatial dis- tribution of fishing fleet to support fishing opportuni- ties decision mak- ing.	Particularly relevant in the context of coastal state negotiations.	Short	Same as 1.
• Traceability of catch	Evidence to demonstrate the prove- nance of the catch – where it was caught and its quality and also	Short	Same as 1 & 4.
• Evidence environ- mentally responsi- ble fishing practices	Estimation of the spatial overlap of by-catch with targeted fishing, providing information for real-time monitoring of fishing activities and decisions to fish in other areas. Evidence of avoiding undersized fish and areas where by-catch occurs.	Short to medium	Same as 1 & 7, plus 10. For every haul, record any non-re- tained by-catch.
• Quality of catch	Suite of metrics inform on health of fish population (see monitoring marine ecosystem)	Short	11. Same as 4, plus TVBM, Histamines and others
• Evidence of eco- nomic efficiency and environmental footprint (carbon)	Trip level data on the economic effi- ciency of operations	Medium	12. Economic indica- tors including: Fuel usage per trip, costs and landed value.
 Identify the geo- graphical bounda- ries / separation of stocks and their mi- grations 	Ability to identify stocks and migra- tion patterns – relevant to ecology and management approaches.	Short to medium	13. Genetic samples from catches For migration studies - linked to sam- ples taken from tagging pro- grammes.
 Sociological snap- shot of the fishing sector 	A very important factor, not in- cluded in most if not all impact as- sessments, is the resilience of the crews and other workers dependent on fishing. This information would allow policy makers to make better	Medium	14. Age profile and professional quali- fications of the crews, transfera- ble skills, alterna- tive occupations,
	informed decisions with regard to social impacts.		etc.

data-deficient spe- cies	ysis. Genetic structure of (sub)popu- lations, and particularly for less abundant and data-deficient spe- cies: develop population models generating estimates of population size.	with: date and lo- cation of haul, length, sex, and photograph of top and bottom sides with size ref- erence in frame
		for species ID

Key design considerations that need to be determined for each application

- Utility (is it needed, wanted, relevant and will it do the job?)
- Spatial resolution of sampling
 - By haul (sampled on vessel)
 - By landing (sampled at factory)
- Scale of sampling the coverage of the fleet
- Quality assurance of sampling procedures
- Quality control of data
- Data Management
- Training requirements including specific consideration of workload implications
- Conflicts of interest Identifying and managing any conflicts of interest requires transparency in processes related to the use of data.
- Engagement and feedback mechanisms (avoid situations where fisheries are only being used to extract information from). Invest in visiting vessels and participating in research.